Coordinate Geometry:
A point is represented by its x, y coordinates: $P(x, y)$
The shortest distance between two points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Coordinates of the midpoint of a line segment with endpoints $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$:

$$
\mathrm{M}\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Slope (gradient) of a line connecting 2 points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$:

$$
\mathrm{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Line Equation

Linear function, given slope and y intercept:

$$
y=m x+b, \text { in which; } b \text { stands for } y \text { intercept }
$$

Linear function, given: the slope m and one point $A\left(x_{0}, y_{0}\right)$:

$$
Y=m\left(x-x_{0}\right)+y_{0}
$$

General form of linear function:

$$
a x+b y+c=0
$$

In which the slope is: $\mathrm{m}=-\frac{a}{b}, \quad$ and the y intercept is: $\mathrm{y}=-\frac{c}{b}, \quad(\mathrm{x}=0)$
Parallel lines have the same slope. If two lines are Perpendicular $\left(90^{\circ}\right)$, their slopes will be as follow:

$$
m_{1} \cdot m_{2}=-1 \quad \text { or } \quad m_{1}=-1 / m_{2}
$$

